Metode Newton
Metode Newton-Raphson
adalah metode pencarian akar suatu fungsi f(x) dengan pendekatan satu
titik, dimana fungsi f(x) mempunyai turunan. Metode ini dianggap lebih
mudah dari Metode Bagi-Dua
(Bisection Method) karena metode ini menggunakan pendekatan satu titik
sebagai titik awal. Semakin dekat titik awal yang kita pilih dengan akar
sebenarnya, maka semakin cepat konvergen ke akarnya.
Prosedur Metode Newton :
menentukan x0 sebagai titik awal, kemudian menarik garis lurus (misal garis l) yang menyinggung titik f(x0). Hal ini berakibat garis l memotong sumbu – x di titik x1. Setelah itu diulangi langkah sebelumnya tapi sekarang x1 dianggap sebagai titik awalnya. Dari mengulang langkah-langkah sebelumnya akan mendapatkan x2, x3, … xn dengan xn yang diperoleh adalah bilangan riil yang merupakan akar atau mendekati akar yang sebenarnya.
Perhatikan gambar diatas untuk menurunkan rumus Metode Newton-Raphson
persamaan garis l : y – y0 = m(x – x0)
y – f(x0) = f'(x0)(x – x0)
x1 adalah perpotongan garis l dengan sumbu – x
0 – f(x0) = f'(x0)(x1 – x0)
y = 0 dan x = x1 maka koordinat titik (x1, 0)
– = (x1 – x0)
x1 = x0 –
x2 = x1 –
.
.
.
xn = xn-1– untuk n = 1, 2, 3, …
Contoh :
Tentukan akar dari persamaan 4x3 – 15x2 + 17x – 6 = 0 menggunakan Metode Newton-Raphson.
Penyelesaian :
f(x) = 4x3 – 15x2 + 17x – 6
f’(x) = 12x2 – 30x + 17
iterasi 1 :
ambil titik awal x0 = 3
f(3) = 4(3)3 – 15(3)2 + 17(3) – 6 = 18
f’(3) = 12(3)2 – 30(3) + 17 = 35
x1 = 3 – = 2.48571
iterasi 2 :
f(2.48571) = 4(2.48571)3 – 15(2.48571)2 + 17(2.48571) – 6 = 5.01019
f’(2.48571) = 12(2.48571)2 – 30(2.48571) + 17 = 16.57388
x2 = 2.48571 – = 2.18342
iterasi 3 :
f(2.18342) = 4(2.18342)3 – 15(2.18342)2 + 17(2.18342) – 6 = 1.24457
f’(2.18342) = 12(2.18342)2 – 30(2.18342) + 17 = 8.70527
x3 = 2.18342 – = 2.04045
iterasi 4 :
f(2.04045) = 4(2.04045)3 – 15(2.04045)2 + 17(2.04045) – 6 = 0.21726
f’(2.04045) = 12(2.04045)2 – 30(2.04045) + 17 = 5.74778
x4 = 2.04045 – = 2.00265
iterasi 5 :
f(3) = 4(2.00265)3 – 15(2.00265)2 + 17(2.00265) – 6 = 0.01334
f’(2.00265) = 12(2.00265)2 – 30(2.00265) + 17 = 5.04787
x5 = 2.00265 – = 2.00001
iterasi 6 :
f(2.00001) = 4(2.00001)3 – 15(2.00001)2 + 17(2.00001) – 6 = 0.00006
f’(2.00001) = 12(2.00001)2 – 30(2.00001) + 17 = 5.00023
x6 = 2.00001 – = 2.00000
iterasi 7 :
f(2) = 4(2)3 – 15(2)2 + 17(2) – 6 = 0
jika disajikan dalam tabel, maka seperti tabel dibawah ini.
n
|
xn
|
f(xn)
|
f'(xn)
|
0
1
2
3
4
5
6
|
3
2.48571
2.18342
2.04045
2.00265
2.00001
2.00000
|
18
5.01019
1.24457
0.21726
0.01334
0.00006
0.00000
|
35
16.57388
8.70527
5.74778
5.04787
5.00023
5.00000
|
Tidak ada komentar:
Posting Komentar